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ABSTRACT

The integral equation

ttP(t) f j(t- s)-× P(s) ds, 0_-S t < w

0

where t > 0 and 0 <.< 1, has a unique solution P(t) which

satisfies appropriate auxiliary conditions. Successive

approximations to P(t) are derived by means of a trapezoidal

numerical integration scheme. They converge uniformly to P(t)

for 0 =< t < co . Other approximation methods are described and

numerical examples are given. Applicability of the methods to

more general integral equations is indicated.



SOLUTION OF AN INTEGRAL EQUATION OF THE THIRD KIND

BY SUCCESSIVE APPROXIMATIONS

by

P. M. Anselone, H. F. Bueckner and D. Greenspan

1. Introduction. Consider the homogeneous Volterra integral equation

t -
1.l) tP(t) f�/�(t-s) P(s)ds, 0 -t< o0

0

where i > 0, 0 < X < 1, and P(t) is a bounded, continuous, non-negative,

integrable function which satisfies the normalization condition

cO

* (1.2) fP(t) dt = I
0

In Fredholm's classification, (1.1) is an integral equation of the third kind.

Moreover, the kernel has a weak singularity. ý.t will be shown that (1. 1) has

a unique solution P(t) with the prescribed properties.

This paper is directed primarily to the presentation of a method for constructing

successive approximations to P(t) and to proving that they converge uniformly

to P(t) . Several related approximation methods are indicated briefly. The

methods are also applicable to more general integral equations of the form

t
(1.3) tP(t) = fK(t- s) P(s) ds, 0 =< t < co

0

However, treatment of such generalizations is deferred to another occasion.

Sponsored by the Mathematics Research Center, U.S. Army, Madison, Wisconsin

under Contract No.: DA-ii-02Z-ORD-2059.
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Our interest in equation (1. 1) was motivated by an application [I] where

P(t) is a probability density function. This interpretation of P(t) is reflected

in the auxiliary conditions, which are not independent,. The following lemmas

will help to clarify the situation.

Lemma 1.1. Let P(t) be a continuous solution of (1. 1) . Then P(t) is

bounded and attains its maximum at some point t = I

Proof. By (1. 1)

tIP(t[ < ± f (t-s)-f d max IP(s)1

110 U :ýS] 0 ýs tJ

(1.4) IP(t)5 < max IP(s)I, t> 00< <

Since < 1 for all t > (]_•)lA , the lemma follows.

Lemma 1.2. Let P(t) be a bounded solution of (1.1) . Then P(t) is

integrableon [0,co) and

(1.5) P (t) = 0O(t-lI-X +E) t> 0, 0 < • -:5 1

Proof. Suppose that IP(t)j < At-' for t > 0, where A > 0 and 0 - c< 1

Then, by (1. 1)
t

tIP(t)l f_ A ý f((t- s)- ) tX , t> 0o
IP(t) _-:5 A ý, B(1-,•, I-k) t-c'-X t> 0
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where B is the beta function 421 . Therefore,

(1.6) P(t) • O(t-'):P(t) -(t-- , 0-<'< 1

By hypothesis, P(t) = O(ta') for a= 0 Inductively let a= 0, X, ZX•.

in (1.6) to prove that P(t) = O(t- ), where m is defined by (m-l)k <i: mX

Therefore, P(t) = O(t-I+c) for 0< E < 1 . Another application of (1. 6) yields

(1. 51 . So P(t) is integrable and the lemma is proved.

Let C[ 0, o) denote the Banach space of bounded, continuous, real functions

on [0, oo) with the supremum norm. Let T denote the integral operator defined

by

t
(1.7) (Tf) (t) = f(t-s)) f(s) ds, 0-t< c0

0

for each f E C[0, oo) such that Tf exists and Tf e C[0,oo) . Then (1.1) can

be expressed as the eigenvalue problem

(1.8) TP=LP

The operator T has some interesting properties not commonly encountered

in the numerical analysis of integral equations. Let f(t) be the characteristic

function of [1 , 00) with c > 0 in (1.7) to show that T is unbounded and,

hence, not completely continuous. Since (1. 1) has a non-trivial solution for

every [i > 0, every positive number is an eigenvalue of T .

Since T is a positive operator, it should be expected that the eigenfunction

P(t) is non-negative. This is also a direct consequence of the method of
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successive approximations, since every approximate solution is non-negative.

Another interesting feature of the present problem is that, as we shall see,

P(t) and all its derivatives vanish at t = 0 . This would seem to suggest

that only the trivial solution could he obtained if the Volterra integral equation

(1. 1) were regarded somehow as an initial value problem. So the usual

approximations methods from ordinary differential equations are not directly

applicable. Nevertheless, the method of successive approximations is based

to a certain extent on such an idea -- each approximate solution vanishes in

some neighborhood of t = 0 .

The existence of P(t) will follow from the method of successive

approximations. The uniqueness is established in Section 2 by means of Laplace

transforms. The Laplace transform approach can be used also for the existence

of a solution, but it is difficult to show by this means that the solution is non-

negative or has other significant properties. Moreover, the method of successive

approximations is applicable to more general equations (1. 3) for which the Laplace

transform of P(t) may not be explicitly derivable.
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Z. Laplace Transform Analysis. Assume that P(t) is a solution of (1. 1)

with the prescribed properties. Then the Laplace transform of P(t)

00

(2.1) P(z) :f e-zt P(t) dt (z = x + iy)
0

is defined for all x=> 0 Transform (1. 1) and use the convolution theorem to

obtain

(Z.2) P'(z) 2)(-[)r(l-)zk-1(z , x>0

X -1
with the principal branch of z . By (1. 2)

(2.3) P(0) 1 I

The unique solution of (2. Z) and (2. 3) is

(Z.4) P(z) = e , (I2 : X

xk

with the principal, branch of z . Since P(z) determines P(t) uniquely (e.g.,

by means of the complex inversion integral), P(t) is determined uniquely by

(1.1) and (1. 2)

When convenient , P(t; X, j.) will be written for P(t) to indicate the

dependence on X and t . We assert that

(2. 5) P(t; X,, [) P( t;-X v

One way to prove this is to show that both members of (Z. 5) satisfy (1.1) and

(1. 2) . Another way is to show that both members have the same Laplace transform,
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given by (2.4) . In view of (2. 5) , it suffices to determine P(t; X , [I ) for

any single fixed value of p.

In particular, (Z. 4) yields

-z if f=./P(l-X) .
(2.6) P(z) = e

Standard works on Laplace transforms [3], [4] give the inverse transforms of
x-z 1 2

e for X =\ and = . Thus,

-1 /4t

(2.7) 
P(t; 1 1 ) _ e

2 " Z -- 'j Tr- T t 3/2

and

-2/27t2

(Z. 8) P(t; Z 2 -e 2
3' 3!F(1/3) -1/'/2t -1/2, -1/6(-4/27t)-

where W denotes a Whittaker function. These results and (2. 5) yield

P(t; 112, p.) and P(t; 2/3, p.) for all p.> 0

Pollard [5] derived a series expansion for the inverse transform of e-Z

which yields

cc ,ln+1

(2.9) P(t; X, X/F(l-\))=• sin(nTr ) r (n% +1)

n=l n ! tn

Again, (2. 5) yields P(t; X, p.) for all k and p. . This series is useful for

calculating P(t) for large values of t . However, it converges very slowly if

t is only of moderate size.
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Van der Corput [6] studied the asymptotic behavior as t- 0 of the sum of

the series in (2.9) . His formulas are useful for evaluating P(t) for small t

Moreover, they imply that P(t) and all its derivatives vanish at t = 0, as was

mentioned earlier. Note that (2. 7) and (Z. 8) are consistent with this result.

Another method of calculating P(t) is by means of the complex integral

formula for the inverse Laplace transform. Thus, by (2. 4),

f+iT]

(2.10) P(t) --i- lim J zt - Qz dz, •>0
2Tri e e

where

X k i\8 iO Tr i

(2.11) z =r e for z =re 7 - < O < -r
2 2

By the reflection principle,

(Z. iZ) P(t) + i Re ez Q dz, >
ý + io

which is an improper Riemann integral. Let z = • + iy to obtain

0O(Z. 13) P(t) L f e~-rcosk8Oc
t= f cos[yt - Qr sin X61 dy, •> 0

0

where

(Z. 14) r z + y 1, =arctan yI:J, 2S6 =arcan [/•] 0 <6 <Z
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Let ý-•O to obtain

00(2. 15) P (t)= f e-D cos(KX.W) Cos [yt - Qy sin(krr/2)1 dy

Although P(t) oan be approximated by integrating (2.13) or (2.15)

numerically, a rather long calculation is involved for each value of t . The

method of successive approximations presented below provides an alternative to

the use of these integrals or the formulas of Pollard and Van der Corput.
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3. The Function R(t) . The method of successive approximations will

be presented first for a solution of equation (1. 1) which satisfies a different

normalization condition. Thus, consider the integral equation

t
(3.1) tR(t) = -f(t- s)- R(s) ds, 0-< t< 00

0

where R(t) is bounded, continuous, non-negative, integrable, and

(3.2) max R(t) = 1
O0_t<oo

(The maximum is attained by Lemma 1. 1 .) The functions P(t) and R(t) are related

by

00

(3.3) P(t) = R(t)/ f R(s) ds , _ t < 00

0

(3.4) R(t) = P(t)/ max P(s) , 0 _- t < 00

0 =5s<oo

The existence of both P(t) and R(t) will follow from the method of

successive approximations. The Laplace transform analysis yields the uniqueness.
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4. The Method of Successive Approximations. For h > 0, let Rh(t) ,

0 < t < 0c, denote a continuous, non-negative, bounded, piecewise-linear

function with possible changes in slope only at the points t = nh, n = 1, Z,

Thus, Rh(t), t =0, is determined in terms of the values Rh(nh), n 00, by

(n+l)h - t t-nh
(4.1) Rh(t) h Rh(nh) + h Rh((,n+l)h), nh < t < (n+l)h, n 2>0

Assume that Rh(t) satisfies equation (3.1) at the points t= nh:

nh
(4.2) nhRh(nh) =p4f (nh-s) Rh(s) ds, n=O

0

Other conditions will be imposed later. Ultimately, we shall let h-0 0

The procedure for deriving Rh(t) may be called a trapezoidal method by

analogy with the trapezoidal rule for numerical integration. Other methods, which

correspond to other numerical integration rules, will be discussed in Section 7.

By (4.1) and (4. 2)

n-i j k+l h h -s -x R s) dnh R h(nh) = ýL Z n-)kR()d

k=O kh

n(I-- k1)(n- -- xnk)Z + (n-k-l)l - Rh(kh)

n-l [ ]- 2 -LR ( k l h l+ Y' (n -k) -(n -nklZ-1) -CZ-X(n-k-l)1 R(klh•

k=O
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Replace k by k -I in the second sum and collect terms to obtain

(4.3) (n-nh) Rh(nh) = nh bn Rh(0+l c R(kh) , nl,
k= 0

where

(4. 4) bn = (2 - X) n l-x + n 2-X (n+1)X n-

(4.5) on =(n+ 1) -X - 2n -X +(n- 1) n

and

(4.6) n

For future reference, note that

(4.7) (1I- nh) Rh(h) = n h (1-X) R h(0)

(4.8) nh To as hi 0

and

(4.9) c n >0 , ,

since each c n is a second difference of a function t 2- with a positive second

derivative.

If nh is not an integer, then (4. 3) determines Rh(nh), n >il inductively

in terms of Rh(0) . Then (4.1) yields a solution Rh(t) of (4.2) . If nh >1

and Rh(0) <>0, then Rh(h) > 0 by (4.7) and (4.8). SinceRh(t)2:0 by
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hypothesis, it follows that Rh(0) and, hence, Rh(t) 0 if h is sufficiently

small. This case will not be considered further.

We assume, henceforth, that nh is a positive integer, i. e., we restrict

h to the bounded and countable set

(4.10) H = {h: nh = 1, , 3,...}

Ncw (4.3) determines Rh(nh) for 1< n < nh, but not for n n-nh- in terms

of Rh(0) . As before, (4.7), (4.8) and Rh (t)>-0 imply that Rh(0) = 0 if

nh> 1 . Let Rh(0) = 0 for all h r H . Then, by (4. 3)

(4.11) Rh(nh) = 0, 0 < n < nh

Assume that

(4.12) Rh(nhh) > 0

Since (4. 3) is now satisfied automatically for n < nh, it reduces to

n-1
(4.13) (n - nh) R h(nh) = nh cn Rh(kh), n>nh

k=nh

which determines R (nh), n > n inductively in terms of Rh(nhh) . Then

(4.1) yields a solution Rh(t) of (4.2) . Since (4.1) and (4.13) are linear

relations,

(4.14) Rh(t) = Rh(nhh) h(t)

where %(t) is the particular solution with (nh) = 1 .
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Equations (4. 1) and (4. 11) yield

(4.15) Rh(t) =, ' 0Ot-5(nh-l)h

where (nh-lyh - 0 as h- 0 by (4.6) . Thus, both Rh(t) and R(t) are

"very flat" at t = 0 . By (4.1), (4.9), (4.12) and (4.13),

(4.16) Rh(t) > 0, t >(nh - l)h

Therefore, the hypothesis that Rh(t) = 0 is satisfied.

Lemma 4.1. Rh(t) is bounded and attains its maximum at some point

t = kh5 < (-A

Proof. The proof is based on (4. 1) and (4. 2) . It is analogous to that

for Lemma 1. 1.

Thus far, Rh(t) is the general non-trivial solution of (4. 2) which satisfies

the given conditions. By analogy with (3. 2) assume now that

(4.17) max Rh(t)=i
O_<t<coo

Then Rh(t) is determined completely and is given explicitly by

(4.18) Rh~t) RPi(t)0 max 1
0:!S< 00
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This formula is convenient for calculation. In view of Lemma 4. 1, the maximum

1
of Rh(t) is a computable quantity. Each function Rh(t), h c H, is a

continuous, piecewise-linear, non-negative approximate solution of (3. 1) and

(3. Z)

Lemma 4. Z. Rh (t) is integrable on [0, co) . Moreover, for 0 < c -< 1I

there exists A(E) > 0, independent of h, such that

(4.19) Rh(t)_-5 A(E) t , t>0, hE H

Proof. The proof is based on (4.1) and (4. 2) . It is analogous to that

for Lemma 1. 2.

Since Rh(t) is piecewise linear and R h(0) 0,

(4. ZO) f Rh(t) dt = h Z Rh (nh)

0 n=0

In view of (4.19), this quantity can be calculated to any desired accuracy.

Define

co
(4.21) P h(t) = R h(t)/ f Rh (s) ds, t_-> 0

0

Then

nh
(4. Z2) nh PhSnh) i f (nh- s)- (s) ds, n0= - ~~Ph(S s >

0

and
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Co 0o
(4.23) f Ph(t) dt = h Z Ph(nh) = 1

0 n=0

Each function Ph(t), h E H, is a continuous, piecewise-linear non-negative

approximate solution of (1. 1) and (1. 2)
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5. Properties of the Approximations.

Lemma 5.1. The functions Rh(t), h E H, are uniformly equicontinuous on

each interval t t < co with tI > 0 . Moreover,

(5.1) IRh(t) -Rh(S)-t-S)- +(t-s) t2s>0, hc H

Proof. For n>m=0p it follows from (4.2) and (4.17) that

nh -xmh

InhRh(nh) - mhRh(mh) I f (nh-s)-Rh(s) ds - f (mh-s)- Rh(s) ds]
0 0

Snh mh< (nh-s-k ds + f m[(mh-s)-% - (nh-s) ds

mh 0

1- \2(nh - mh)1-k + (mh),- - (nh)l-} f iZ- (nh-mh)l--

By symmetry,

(5.2) [nhRh(nh) - mhRh(mh)1 < 5 [nh - mh 1'- , m, n =0

It follows from (4.17) and (5. 2) that

Snh Rh(nh.) - nh Rh(mh)I nh Rh(nh) - mh Rh(mh) I + mh Rh (mh) - nh Rh(mh)I

(5.3) IRh(nh) - Rh(mh)i < {y- inh - mh- + Inh - mh , n > 0
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Let nh:5S, t:5(n+1)h . Then, by (4. 1) and (5. 3),

IR () h s~ =ith 1I Rh((n +1) h) - Rh (nh) I

It-sI I f-ý1 hl1 X + hl 2n") t +It-sK!j
- h (n +1hI-%(+l)h I - X h> x

S0 that

(5.4) IRht - R 2"I~ It-s[11-1 + It-si}, nh :- s ,t :-5(n+l)h, s>0

Therefore, (5. 1) is valid in this case.

Now assume that s -: nh :-5 t for some n . Define m and n such that

(m -1)h :- s -:5mh -5nh :5t -5(n + 1)h . By (5.3) and (5. 4),

IRh(t) - Rh4s)1I: IRh(t) - Rh(nh)l + [Rh(nh) - Rh14mh)I + l~h(mh) - Rh14s)j

< 1{ZpL(t -nh)1k + (t -nh1} +nh zlI(nh -mh)'- + (nh -mh)}

+i 4L (mh -s)1-ý +(mh -s)}

S 1-x

Since 0 < X < 1 , the function f (t) =t ,- t :O, is concave:

a I x+b Ia < ý,+ b I k a ' x + bI x < X( + b)~ I

2 ~ zj a



-18- #345

for a, b >0 . It follows that

1-X bl-X cl-\ zZ\ ~ -
(5.6) a +b +o =Z (a + b + , a, b, c O

Then (5. 5) and (5. 6) yield (5. 1) for this case. Therefore, (5.1) is valid in

general and the lemma is proved.

Several properties of the constants c defined by (4. 5) will be needed in

the proof of the next lemma. First, note that

c Xn [+ L)Z-X + (l--X1
n n n

Use three terms of the binomial expansions for (I + L_) Z-X to prove that
n

x
(5.7) n c -n(l-X)(2-X) as n-co

Next, note that c = c((n), wheren

Then

l-X -zt I-X1- -X l
2 ----)i c'(t) = (t + 1)l- t - + (t - i)l- , t >

Since this is a second difference of the function g(t) = tl- , t =>l, which has

a negative second derivative, c'(t) < 0 . It follows that both c(t) and {cn}

are monotone decreasing. Therefore, by (5. 7)

(5.8) c 10 as n-
n
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I/X
Lemma 5. 2. Let 0 < tI < ý . Then, for all sufficiently small h E H

the functions Rh(t) are monotone non-decreasing on the interval 0 5 t : t 1

Proof. In view of (4.11), (4.12) and Lemma 4. 1, there exists a unique

integer Nh for each h E H such that

Rh(kh) < Rh((k+l)h), nh - 1< k < Nh

(5.9)

Rh(Nhh) =:Rh((Nh + 1)h)

Then Rh(t) is non-decreasing for 0= <t = Nh h . By (4.13)

(Nh+l-nh) Rh ((Nh + 1)h) - (Nh - nh) Rh(Nh h)

Nh Nh-i

= nh Z C N +l-k Rh(kh) - nhh Z" C N -k Rh(kh)
k=0 h =0

Replace k by k + 1 in the first sum and use Rh(0) = 0 to obtain

(Nh+ 1-nh) [Rh((Nh+ 1)h) - Rh(Nhh)] + Rh(Nh h)

N h-1

nh Z CNh-k [Rh((k+l)h) - Rh(kh)]
k=0 h

Hence, by (5.8), (5.9) and Rh(0) = 0
Nh-i

R h(Nh h)2nhcNh Z [Rh((k+l)h - Rh(kh)] = nh cN Rh(Nhh)RhNh =hCh k=0 Ch
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Therefore, Ph CN 1 . By (4.6)

(5.10) c_ (1 -X)(2 -X) hk(5.1i0) =N _
Nh nh

sothat c N-0 as h- 0 . Inviewof (5.8), N h--'oo as h- 0 . By

(5.10) and (5.7)

ýJ.(Nh) CN h  h 0

(Nh h)'> (i-X)(2-k)-• as hI- X XNh- oo'

Therefore, N h >tI for h sufficiently small. Since Rh(t) is non-decreasing

for 0ý- t <5 Nh h, the lemma is proved.

We conclude this section with the statement of an auxiliary result of a

general nature which will be used shortly.

Auxiliary lemma. If a sequence of monotone functions converges pointwise

to a continuous function on a closed interval, then the convergence is uniform.

This is an old result whose proof is not difficult. For a recent reference,

see [7J.
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6. The Convergence of the Successive Approximations. We consider first

the convergence of the functions Rh(t) as h - 0 through H . We shall regard

{Rh: h i H) as a sequence ordered by letting h decrease through H or,

equivalently, by letting nh increase through the positive integers.

Lemma 6. 1. Every subsequence of {Rh: h E H) has a further subsequence

which converges uniformly on each finite interval.

Proof. Since 0< Rh(t)< 1, Lemma 5.1 implies that the Arzela-Ascoli

theorem is applicable, and by that theorem there exist successive (nested)

subsequences of {Rh: h E H) whichrespectively, converge uniformly on the

mn. m]; m = , 3, 4, .... Then the usual diagonal procedure yields

a single subsequence which converges uniformly on every one of the intervals

[I -, ml . Since Rh(O) = 0 for all h E H, the subsequence converges pointwise

for t > 0 . It follows from Lemma 5. 2 and the Auxiliary Lemma that the subsequence

converges uniformly on each finite interval.

Lemma 6. 2 . Every subsequence of {Rh: h - H) which converges uniformly

on each finite interval converges to a solution R(t) of (3.1) with the prescribed

properties.

Proof. Suppose that Rh(t) -• R(t) as h -• 0 through a subset H' of H

The assumed uniform convergence and the continuity of each function Rh(t) imply
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that R(t) is continuous. Since 0 < Rh(t) 1 1, we have 0 < R(t) =< 1 . By

ý4.17) and Lemma 4.1

max R(t) = lir max

_ I A__ i/h-*0 0<_ R

<t-l- hEW

so that max R(t)=l . In (4. Z), let n-oo, h- 0 and nh- t with h E H'
O:t <00

to obtain (3. 1). Finally, R(t) is integrable by Lemma 1. 2 . Thus, the lemma

is proved.

Theorem 6.1. There exists a unique solution R(t) of (3.1) with the

prescribed properties, and Rh (t) - R(t) uniformly for 0<5t< o0 as h - 0 through

H.

Proof. The existence of R(t) follows from Lemmas 6.1 and 6. Z. The

uniqueness is a consequence of (3.4) and the uniqueness of P(t), which was

established in Section 2. Fix t E [0,00) arbitrarily and let r(t) be any limit

point of the numerical sequence {Rh(t): h e H} . Then the sequence of

functions {Rh: h E H-} has a subsequence which converges at t to the value

r(t) . By Lemmas 6.1 and 6. Z, there is a further subsequence which converges

to R on [0,0o) . Therefore, r(t)= R(t) and, hence, Rh(t) -* R(t) as h- 0

through H
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The pointwise convergence of R1 I(t) to R(t) and the uniform equicontinuity

established in Lemma 5.1 imply that Rh(t) -+ R(t) uniformly on each interval

[t1, t2 ]C(0,oo) . By Lemma 5.2 and the Auxiliary Lemma, the convergence is

uniform on each finite interval. Finally, the convergence is uniform for

0<t< oo by (4.19).

Theorem 6. 2. There exists a unique solution P(t) of (1. 1) with the

prescribed properties, and Ph(t) - P(t) uniformly for 0 < t <00 as h - 0

through H .

Proof. The existence of P(t) follows from (3. 3) and the existence of

R(t) . The uniqueness was established in Section 2. By Lemma 4. 2, Theorem

6. 1, and the Lebesgue dominated convergence theorem

00 00

(6.1) f Rh (t)dt f R(t)dt as h- 0
0 0

Therefore, by (3. 3), (4. 21) and Theorem 6.1, Ph(t) converges uniformly to

P(t) and the theorem is proved.

In addition, it can be shown that Ph (t) -* P (t) in L1(0, oo) as h- 0

through H . This is important if P(t) is interpreted as a probability density.
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7. Related Methods for Deriving Successive Approximations. Though our

remarks in this section are, for the sake of brevity, restricted primarily to

Rh(t), analogous results hold for Ph(t)

The trapezoidal method described in Section 4 has the following features.

(a) Rh(t) is determined by linear interpolation from the values

Rh(nh), n>_0 ;

(b) Rh(t) satisfies the integral equation (3.1) at the points

t =nh, n >0 ;

(c) Rh(t) satisfies the normalization condition (3. Z)

Variants of the method are obtained if other interpolation rules are used

in (a) . For example, consider Rh(t) a step function such that

(7.1) Rh(t) = Rh(nh), nh< t < (n+ l)h, n>0 .

It would follow from (b) that

(7. Z) nRh(nh)= - n- Rh(kh) (n-k)-k -(n-k-l)l1-k n2l
k;0

Then (7. 2) determines Rh(nh), n Ž1, by induction in terms of Rh(O)1 Rh(t)

is obtained from (7.1), and Rh(0) is chosen so that (4.17) is satisfied.

Theorem 6.1 is valid also for this case. Note that Rh(0})# 0, in contrast with

the trapezoidal method.

As another example, consider R h(t) a step function such that

(7.3) Rib(t). = R-h((n +1) h), nh <t :-5 (n +1) h, n >0 .0
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Then (b) yields, for each n => 1

- _% -X n-i iikl
(7.4) (n -X) Rh(ýnh) = 1 , Rh kh) [(n-k+1) - (n- k)

k=l

Here, analogous to the trapezoidal method, we assume that mh l- is anhl-X

integer, and let Rh(nh) = 0 for 0 5 n < mh . The rest of the derivation of

Rh(t) is similar. Again, Theorem 6.1 is valid.

A third and last example involves Rh(t) determined by parabolic interpolation

from three successive values Rh(nh) . Once again, Theorem 6.1 is valid.

Further details are omitted.

Finally, it is worth noting that the original equation (l. 1) provides a

natural means of smoothing an approximate solution Rh(t)

t -X
(7.5) R(t) f tc t- s) Rh(s)ds

0

The convergence of, Rh t) as h-k 0 is not investigated in this report.
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8. Examples. The numerical calculation performed in support of the methods

described in this paper were too extensive for complete reproduction and though

a variety of values of X and p, were considered, only two typical examples in

w1
which X = 2 , 4 -T will be discussed. Programming was performed by

J. Al Abdulla and calculations were completed on the CDC 1604.

1 1
Example 1. For X = 1 j - , the exact solution of (1. 1) - (1. 2) is given

by (2.7) and (2.13) . The expression in (2.13.) was approximated by

(8T) I exp t-(l+y [ 2
0

Co t( r~ / -1 2 -1/2 11/2

Then, (8.1) was evaluated for a variety of values of t in the range 0:< t < 1

by means of Simpson's rule with h = . 0001 . It was found that any P =>4500

yielded approximations which agreed with the exact solution to at least five

decimal places.

1 1
Example 2. For X =L , Z _ the exact solution of (3.2) - (3.3) is

(8.2) R(t) = P(t)/ max P(s)

0=<s<oo

where P(t) is given by (2.7) . For nh = 6, h is approximately .0039 by

(4.6), and % (t) and Rh(t) were generated by means of (4.13) and (4.17) .
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Selected results are displayed in Table I. It must be emphasized here that an

unexpected stability always accompanied the trapezoidal method. In all our

examples roundoff error never accumulated excessively and Rh(t) always

appeared to damp out even though n was taken to be as large as 100, 000.
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Table I

1
n t : nh R%(t) Rh(t) R(t)

6 .0234 1.0000 . OOlz .00195

7 . 0273 4.9706 .0064 . 00713

10 . 0390 51. 6291 . 0670 . 06512

14 . 0546 193. 8953 . 2516 . 24547

20 .0780 443.4639 .5755 .56781

25 . 0975 599. 1857 .7776 .77131

30 . 1170 694.4550 .90 1Z .89961

38 . 1482 763.3806 .9907 .98952

42 . 1638 770.5151 1.0000 1.00000

45 . 1755 768.5804 .9974 .99732

50 . 1950 755.8736 .9810 .98282

54 .2106 740. 023 1 .9604 .96290

60 .2340 710. 8442 .9225 .92576

62 .2418 700.2745 .9088 9 1223

65 . 2535 683.996.3 . 8877 . 89 135

68 .2652 667. 442 1 . 8662 .87006

70 .2730 656.3554 .8518 .85578

78 .3042 612. 5302 .7949 .79921

86 .3354 570.7857 .7407 .74516

94 . 3666 531.9508 .6903 .69480

102 .3978 496.2682 .6440 .64846
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